edexcel 흋

Mark Scheme (Results)

Summer 2013

GCE Biology (6BIO2)
Paper: 01R
Unit 2: Development, Plants and the Environment

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code US035469
All the material in this publication is copyright
© Pearson Education Ltd 2013

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- \quad Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
Quality of Written Communication
Questions which involve the writing of continuous prose will expect candidates to:
- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Additional Comments	Mark
$1($ a)	animal ; bacterial ; (surface) membrane ; animal ; plant; bacterial; ribosomes;	ACCEPT prokaryote instead of bacterial	

Question Number	Answer	Additional Comments	Mark
2 (a)	1. idea of testing on non-humans e.g. animals, tissue culture ; 2. to test for toxicity / eq ; 3. idea of testing on healthy volunteers ;	3. ACCEPT 'people without the disease' NOT 'healthy patients'	

Question Number	Answer	Additional Comments	Mark
2 (b)	1. Idea of tested on two groups of patients (with the condition);	2. ACCEPT some patients given drug and some given placebo	
3. (placeborence to use of placebo ; as a \{control / comparison\} with the actual drug ; 4. reference to psychological effect of placebo / eq; ;	3. ACCEPT dummy pill, sugar pill, fake pill		
5. idea that neither testers nor patients know if the treatment contains the drug or not ;	6. idea that this removes bias ; 7. idea of testing to find out if drug is effective ;	(4)	

Question Number	Answer	Additional Comments	Mark
3 (a)(i)	囚 B metaphase;		(1)

Question Number	Answer	Additional Comments	Mark
$3(\mathrm{a})(\mathrm{ii})$	1. reference to \{chromosomes / chromatids\} ; 2. at \{centre/middle/equator\} (of cell) / on the metaphase plate;		

Question Number	Answer	Additional Comments	Mark
$3(b)$	区 B interphase;		(1)

Question Number	Answer	Additional Comments	Mark
3 (c)	QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) 1. telophase ; 2. chromosomes \{decondense / eq \} ; 3. spindle (fibres) break down / eq ; 4. nuclear $\{$ membrane / envelope \} reforms / eq ; 5. two nuclei present /eq ; 6. nucleoli reform / eq ; 7. each cell will have centrioles; 8. idea of cytokinesis;	QWC emphasis is spelling 2. NOT chromatids 8. NOT ' 2 new cells' (it is in the stem of the Question) ACCEPT forms cleavage furrow	(4)

Question Number	Answ er	Additional Comments	Mark
4(a)(i)	1. Idea that temperature is a controlled variable / idea that temperature could affect \{results / length of pollen tube\} ;	1. NOT as a control	
2. idea that (pollen tube) \{ growth / enzymes / proteins /eq \} affected by temperature ; 3. idea that the investigation is valid ;	3. NOT reliable IGNORE fair test, accurate, precise	(2)	

Question Number	Answer	Addit	onal Comments	Mark
4(a) (ii)	1. idea of increase from $\{0 / 1\}$ to 10 ($\mu \mathrm{g} \mathrm{dm}{ }^{-3}$) ;	IGNORE UNITS		
	2. greatest length at $10\left(\mu \mathrm{~g} \mathrm{dm}^{-3}\right) /$ greatest increase between 1 and 10 ($\mu \mathrm{g} \mathrm{dm}{ }^{-3}$) ;	2. 'Great 1 and 10 as mp2	st increase between scores mp1 as well	
	3. idea of decrease between $\{10 / 50\}$ and $200\left(\mu \mathrm{~g} \mathrm{dm}^{-3}\right)$;			
	4. shorter at $200\left(\mu \mathrm{~g} \mathrm{dm}^{-3}\right)$ compared with 0 / eq ;			
	5. idea of greatest \{change / drop\} between 100 and $200\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$;			
	6. credit correct manipulation of the data	6. Other	examples:	
	calculated by subtraction), e.g. decreases by $76 \mu \mathrm{~m}$ between 100 and	Conc. change	Difference ($\mu \mathrm{m}$)	
	$200 \mu \mathrm{~g} \mathrm{dm}{ }^{-3}$;	0-1	22	
		0-10	75	
		1-10	53	
		10-50	-39	
		10-200	-135	
		50-100	-20	
		$\begin{aligned} & 100- \\ & 200 \end{aligned}$	-76	
		0-200	-60	(3)

Question Number	Answer	Additional Comments	Mark
4 (a) (iii)	mitosis / nuclear division / DNA synthesis ;		

Question Number	Answer	Additional Comments	Mark
4 * (b)	QWC- Spelling of technical terms must be correct and the answer must be organised in a logical sequence 1. idea that generative nucleus divides to form two male gametes ; 2. by mitosis; 3. pollen tube fuses with embryo sac / eq ; 4. reference to double fertilisation ; 5. (one) male \{ gamete / nucleus \} fuses with egg (cell) nucleus ; 6. to produce diploid zygote; 7. other male nucleus fuses with two polar nuclei ; 8. to produce triploid endosperm ;	QWC emphasis on logical sequence 1. ACCEPT 'haploid' for 'male' and 'nuclei' for 'gametes' 5. NOT ovule 7. ACCEPT fusion nucleus, NOT polar bodies	(4)

Question Number	Answer	Additional Comments	Mark
4 (c)	1. reference to both \{ independent / random \} assortment and \{ crossing-over/chiasma(ta) \} ; 2. independent assortment gives rise to \{new / different / eq\} combinations of (paternal and maternal) chromosomes ; 3. crossing over involves swapping of \{sections / eq\} of \{chromatids /chromosomes\} ;	3. NOT swapping genes ACCEPT new combinations of alleles (on a chromosome) / correct reference to recombinants	(2)

Question Number	Answer	Additional Comments	Mark
$5(\mathrm{a})$	1. prevent \{ contamination by / entry of \} bacteria / eq ; 2. idea of maintaining humid conditions ; 3. consequence of either on growth of cotton plants, e.g. competition or infection by bacteria, pathogenic bacteria, less water available for growth of plant ;	1. ACCEPT microorganisms, fungi	

Question Number	Answer	Additional Comments	Mark
5(b)	1. \{ one parent / same plant / eq \} used ;	2. no \{ fertilisation / gametes / meiosis \} involved ;	2. ACCEPT no sexual reproduction 3. reference to mitosis / asexual
3. ACCEPT clones. IGNORE somatic and stem cells	(2)		

Question Number	Answer	Additional Comments	Mark
5 (c) (i)	1. as BAP increases, the percentage of explants with new shoots decreases / eq ;	1. IGNORE descriptions of gradient. ACCEPT negative correlation	
2. idea of little change from 0.5 to $1.0\left(\mathrm{mg} \mathrm{dm}^{-3}\right) ;$	3. credit correct manipulation of the data ;	3. ACCEPT 73% decrease from $\underline{0-1.5}$	(3)

Question Number	Answ er	Additional Comments	Mark
5 (c) (ii)	1. idea of both lines follow the same trend, e.g. little difference in effect between the two concentrations (of NAA) ;	IGNORE comments on method used for investigation	
	2. idea that at some BAP concentrations 1mg of NAA results in a $\{$ higher / lower \} percentage, (therefore conclusion is valid);	3. idea of differences being quantified, e.g. greatest difference is 12\% or lowest is 3\% ;	4. comment on no evidence provided for variability in data /eq ;
4. no errors bars / no standard deviation / no mean	(3)		

Question Number	Answer	Additional Comments	Mark
$5(\mathrm{~d})$	Totipotency ;		(1)

Question Number	Answer	Additional Comments	Mark
$6(\mathrm{a})$	1. increasing mass increased the distance up to $150 \mathrm{~g} ;$	2. $\{150$ to $200 \mathrm{~g} /$ after 150 g$\}$ the distance did not change; 3. idea that relationship is linear to line levels off on $100(\mathrm{~g}) ;$	graph' 4. greatest change in 0 to 100 g range ;

Question Number	Answer	Additional Comments	Mark
6(b)	1. second fibre had \{ less tensile strength / greater elasticity \} /eq $;$	1. IGNORE 'different' unqualified	
2. different fibre \{ size /content / source \}	2. ACCEPT reference to width / length / mass / lignin content / age / part of plant fibres extracted from		

Question Number	Answer	Additional Comments	Mark
6(c)	1. named fibre variable controlled e.g. length, width, mass ; 2. environmental variable controlled, e.g. temperature, humidity ; 3. named procedural variable controlled, e.g. size of masses used ; 4. idea of adding masses until fibre breaks / eq ; 5. repeat and find the \{ mean / average \} ; 6. reference to action taken in case of \{ anomalous result / outlier \} ; 7. reference to safety procedure ;	4. ACCEPT 'measure the mass' that either 'breaks the fibre' or that 'the fibre can hold before breaking'	(5)

Question Number	Answer	Additional Comments	Mark
$7(\mathrm{a})$	\boxtimes C	Archaea, Bacteria and Eukarya;	

Question Number	Answer	Additional Comments	Mark
7(b) (i)	1. published in \{ scientific paper / journal \} / eq ;	1. IGNORE online, internet ACCEPT scientific magazine	

Question Number	Answer	Additional Comments	Mark
7 (b) (ii)	1. idea of peer review ; 2. idea of repeating experiments to confirm or validate findings ;	2. must be an indication of further testing being carried out	(2)

Question Number	Answer	Additional Comments	Mark
7 (c)	1. idea that organisms with \{ specific / particular / shared / common / similar /eq \} \{ characteristics / features / traits / eq \} are placed in a group;		
2. idea that taxonomic groups have specific differences ;	3. idea that phylogeny describes \{evolutionary / genetic\} relationship; 4. idea that molecular phylogeny based on similarities in \{ DNA / DNA sequence / proteins / eq \};	4. IGNORE gene sequence	

Question Number	Answer	Additional Comments	Mark
$8(\mathrm{a})$	Q \quadC a species found in one geographical location;		

Question Number	Answer	Additional Comments	Mark
8 (b)	1. idea that it is a small population, e.g. only two females ; 2. with a small gene pool / eq ; 3. and low genetic diversity / eq ; 4. reference to inbreeding problems ; 5. idea of difficulties in breeding, e.g. some may have been too old / ill / eq;	2. Must refer to original population. IGNORE reference to allele frequency. 3. Must refer to original population. ACCEPT Iow genetic variation. 4. NOT interbreeding 5. IGNORE reference to lack of attraction between individual squirrels	(3)

Question Number	Answer	Additional Comments	Mark
8 (c) (i)	1. Highest value as 550 and lowest value as $200 ;$	ACCEPT 63.6% or 64% for 2 marks	
2. Difference divided by 550, e.g. $350 \div$ $550 ;$	ACCEPT correct final answer for 3 marks - must refer to decrease	(3)	

Question Number	Answer	Additional Comments	Mark
$8(\mathrm{c})$ (ii)	1. number of middens fell / eq ; 2. (therefore) population of squirrels fell; 3. reference to slight increase in population in 2004;		

Question Number	Answer	Additional Comments	Mark
8 (d)	1. population (in the wild) falling; 2. loss of habitat as a results of fire; 3. breeding programme will increase numbers /eq; 4. idea that it would enable reintroduction to the wild; 5. idea of endemic to one specific area, e.g. endangered, not found elsewhere; 6. idea of conserving species e.g. may face extinction;		

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code US035469 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Llywodraeth Cynulliad Cymru
Welsh Assembly Government

Rewarding Learning

